RESOLUTE

Research Empowerment on Solute Carriers

Live cell imaging of the Zinc solute carrier SLC30A8 (ZnT8)

Lucia Azzollini^{1#}, Dolores Del Prete^{1#}, Gernot Wolf², Christoph Klimek², Mattia Saggioro¹, Fernanda Ricci¹, Eirini Christodoulaki², Alvaro Ingles-Prieto² & Lia Scarabottolo¹

¹ Axxam S.p.A., OpenZone, Bresso (Milan, Italy)

² CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

[#] These authors equally contributed to this work

Introduction

- In pancreatic β-cells, zinc is crucial for the synthesis and secretion of insulin, which plays a key role in glucose homeostasis and which deficiency is the cause of diabetes.
- The accumulation of zinc in pancreatic cells is regulated by the solute carrier transporter SLC30A8 (Zinc Transporter 8, **ZnT8)**, which transports **zinc from cytoplasm in intracellular vesicles**.
- Allelic variants of SLC30A8 gene have been linked to diabetes (in particular seem to increase the risk of the development of type 2 diabetes).

Figure 1 – Solute carrier family 30 (zinc transporter), member 8.

Challenges in developing an assay for SLC30A8	Solutions			
SLC30A8 physiological expression in intracellular vesicles	SLC30A8 recombinant over-expression in plasma membrane			
Cytotoxicity of SLC30A8 over-expression	Inducible system and optimization of induction condition			
High background (endogenous Zinc transporters)	Imaging approach (single-cell analysis, high sensitivity)			

A novel functional imaging- based assay specific for SLC30A8 was successfully developed in 384-well plate format:

Cell lines: HEK293-JI cells overexpressing SLC30A8, SLC30A8 D110N_D224N, SLC30A8 R325W or R325Q (from CeMM, HA-tagged SLC; IF expression confirmed)

Read-out: Zinc (Zn²⁺) influx measurements using a Zinc-sensitive fluorescent dye (Fluo Zin-3, AM, cell permeant, by ThermoFisher)

Immunofluorescence for cellular localization of SLC30A8 overexpressed in HEK293 Jump-In T-REx cell lines

SLC30A8D110N_D224N

Image acquisition and image analysis

Cells stained with the FluoZin-3 (green) and counterstained with DAPI for nuclei (blue) were acquired by means of High Content

SLC30A8

SLC30A8R325Q

D110N_D224N SLC30A8 displayed the same levels expression and localization at the plasma membrane as SLC30A8.

The localization at the plasma membrane and overall expression of the diabetes variants (R325W or R325Q) was lower compared to SLC30A8 and the transport-dead mutant (D110N_D224N).

Figure 2 – Merge images of staining with: HA antibody for SLC30A8 and mutants (green), SLC1A5 antibody for plasma membrane (red), nuclei (blue). Images were generated by CeMM.

Microscope (Opera Phenix, Revvity). Then cells were segmented to

Responding cells were selected based on a fluorescence intensity of FluoZin-3. The number of responding cells and relative mean fluorescence intensity were exported from the analysis.

magnification.

Results	Summary			Properties			
Population: Nuclei	Value						
Number of Objects	124						
Property	Mean	CV %	StdDev	/ Median	Max	Min	Sum
Intensity Ring Region-Zinc Mea	n 1631.14	43.9881	717.508	8 1353.12	5873.24	1017.17	20226
Zinc positive cells	0.709677	64.2197	0.45575	53 1	1	0	88

Figure 3 –*Image analysis process: 1. Nuclei segmentation* with DAPI channel; 2. Cytoplasm ring region extended from nuclei segmentation; 3. Selection on responding cells; 4. Data extraction. Image analysis is performed with

Harmony 4.9 (Revvity). Image acquired by 20x

Li	ive imaging	analysis of SLC30A8	Comp	arison bet	ween ZnO	Cl ₂ transport	activity across SLC30A8
			mutants				
SLC30A8	WT	SLC12A6 (unrelated)• Cells induction: 24h (10ng/mL doxycycline).	SLC30A8	SLC30A8 (D110N,D224N)	SLC30A8 (R325W)	SLC30A8 (R325Q)	 Cytosolic accumulation of ZnCl. is greatly impaired
		 Fluorescent dye loading: 45 mins at 37°C (in Ca²⁺ -Mg²⁺ - phosphate-free HBSS w 5mM EDTA). 				FluoZ Hoec	in SLC30A8 D110N_D224N mutant and significantly lower than SLC30A8.
FI 100 -	uoZin-3, 1 mM ZnC	• Automatic wasning (3X) w $Ca^{2+} -Mg^{2+} -phosphate-free$ HBSS. • Stimulation w Zn^{2+} dose-	S 100 → SLC30/	48	ي *	SLC30A8	 Mutations associated with T2DM (SLC30A8 R325W and R3250) display

Figure 4 – Representative images of FluoZin-3 staining after stimulation of induced cells with 1 mM ZnCl₂ (upper side); doseresponse curves expressed as percentage of Zinc positive cells (lower side). Image acquired by 20x magnification.

- response (as Zinc Chloride) up to 5 mM.
- Operetta CLS Reading at (Revvity).
- internalization • Zinc was SLC30A8 increased in unrelated compared to transporter (SLC12A6) or WT cell line.

Figure 5 – Representative images of FluoZin-3 staining after stimulation of induced cells with 1 mM ZnCl₂ (upper side); dose-response curves expressed as percentage of Zinc positive cells (lower side on the left); histograms representing percentage of Zinc positive cells at 1 mM ZnCl_2 . Statistical analysis: Brown-Forsythe and Welch ANOVA tests, p-values <0.05 = *, <0.005=**, <0.001=*** (lower side on the left). Image acquired by 20x magnification.

ZnCl₂ alterations transport (higher n° of cells accumulating ZnCl₂ compared to SLC30A8).

This **cellular-based assay** represents a novel and valuable tool to screen modulators of SLC30A8 transporter activity.

innovative medicines initiative The RESOLUTE project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (www.imi.europa.eu) under grant agreement No 777372. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA. This poster reflects only the authors' views and neither IMI nor the European Union and EFPIA are responsible for any use that may be made of the information contained therein.

www.re-solute.eu lucia.azzollini.la@axxam.com